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Abstract
The range of validity of the semiclassical Smoluchowski equation derived
recently by Coffey et al is discussed. The analysis is based on the quantum
Smoluchowski equation derived by the present author before. A quantum
generalization of the Einstein law of Brownian motion is also obtained.

PACS numbers: 05.40.−a, 03.65.Yz

Recently, Coffey et al [1] have proposed a heuristic method for the determination of the
effective diffusion coefficient of a quantum Brownian particle. Starting from the master
equation for the Wigner distribution function they have derived a semiclassical Smoluchowski
equation

∂tP = ∂x[P∂xV/ζ + ∂x(DeffP)]. (1)

Here P is the probability density of the Brownian particle, ζ is the friction coefficient, V is
an arbitrary external potential and Deff = D

(
1 + β2h̄2∂2

xV
/

12m
)

is the effective position-
dependent diffusion coefficient, where D = kBT/ζ is the classical Einstein diffusion constant
and β = 1/kBT . It is shown that equation (1) provides the correct equilibrium distribution
in the frames of the adopted semiclassical approximation. However, equation (1) does not
describe well enough the evolution. For instance, in the case of a free quantum Brownian
particle (V = 0) it reduces to the classical diffusion equation without any quantum effect left.
Hence, according to equation (1) the position dispersion of a free quantum Brownian particle
obeys the classical Einstein law σ 2 = 2Dt . Numerical simulations [2] have shown, however,
that the width of the wave packet of electrons exhibits anomalous diffusion with σ ∼ tα ,
where α depends strongly on the hopping strength.

A decade ago a Letter to the Editor of the present journal was published [3], where the
following quantum Smoluchowski equation is derived:

∂tP = D∂x

[
P∂x

∫ β

0
P −1/2(Ĥ + 2∂β)P 1/2 dβ

]
, (2)

where Ĥ ≡ −(h̄2/2m)∂2
x +V is the Hamiltonian of the quantum Brownian particle. It is proven

that the equilibrium solution of equation (2) is the quantum canonical Gibbs distribution. In
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contrast to equation (1), being semiclassical expansion on small h̄, equation (2) is general. The
corresponding quantum Fokker–Planck and Klein–Kramers equations in the momentum and
coordinate-momentum spaces, respectively, are also proposed [4]. In the case of a harmonic
oscillator the solution of equation (2) is a Gaussian distribution with dispersion satisfying the
following equation [3]:

∂tσ
2 = 2D

(
1 + σ 2

∫ β

0

h̄2

4mσ 4
dβ − βmω2

0σ
2

)
. (3)

The equilibrium solution of equation (3) is the well-known expression σ 2
e = (h̄/2mω0) coth

(βh̄ω0/2) from the quantum statistical physics. If someone is interested in the semiclassical
limit, one must replace the dispersion in the quantum term above by the corresponding classical
expression. If, in addition, one replaces σ 2 by its classical value at equilibrium kBT/mω2

0,
equation (3) reduces to

∂tσ
2 = 2D

(
1 + β2h̄2ω2

0

/
12 − βmω2

0σ
2
)
, (4)

which coincides with the result of Coffey et al. Therefore, their approximation corresponds
to relaxed quantum fluctuations.

The difference becomes more significant in the case of a free Brownian particle, where
equation (3) reduces to

∂tσ
2 = 2D

(
1 + σ 2

∫ β

0

h̄2

4mσ 4
dβ

)
. (5)

The approach of Coffey et al corresponds to equation (5), where in the last quantum term the
dispersion is replaced again by its equilibrium classical value being infinity. This is, however,
a very rough approximation resulting in complete loss of the quantum term. That is why
equation (1) reduces to the classical diffusion equation in the case of a free quantum Brownian
particle. The term in the brackets represents, in fact, the relative increase of the diffusion
coefficient due to quantum effects. Since the dispersion σ 2 increases in time, at large times it
is large enough that the quantum term, being inversely proportional to σ 2, becomes negligible.
Hence, at large t the solution of equation (5) tends asymptotically to the classical Einstein
relation σ 2 = 2Dt . In contrast, at small t the dispersion σ 2 is small enough that the quantum
term in equation (5) is dominant. Hence, one can neglect now the unity in the brackets of
equation (5) and the solution of the remaining equation is

σ 4 = h̄2

m∂β(βζ )
t. (6)

This is an interesting result showing that the quadrate of the dispersion is linearly proportional
to time. It correlates well to the numerical simulations, where α tends to about 0.25 at zero
hopping strength (see figure 7 in [2]). The latter limit corresponds to zero temperature in our
case, where equation (6) reduces to the pure quantum expression σ = (h̄2t/mζ)1/4. Usually
the diffusion coefficient in liquids obeys the Arrhenius law, D = D0 exp(−βEa), where Ea is
the diffusion activation energy. Introducing this model in equation (6) yields σ 2 = 2λE

√
Dt ,

showing that the quantum diffusion is important at small displacements up to λE = h̄/2
√

mEa .
According to this relation, the quantum transport has a typical length scale of the order of
the de Broglie wavelength of the diffusion activation energy. This is a new result since it
is usually accepted that the length scale of the quantum Brownian motion is the thermal de
Broglie wavelength. It is not surprising, however, since a main feature of quantum particles is
the tunneling effect through potential barriers.
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If one is interested as Coffey et al in the exact semiclassical limit, one must replace the
dispersion on the right-hand side of equation (5) with its classical but non-equilibrium value
σ 2 = 2Dt . After integration on time, one yields

σ 2 = 2Dt +

(
D2

∫ β

0

h̄2

4mD2
dβ

)
ln t + const . (7)

As seen there is a logarithmic term proportional to h̄2, which is missing in the theory of Coffey
et al due to suppressed quantum relaxations. In fact, the application of their approach to a free
Brownian particle is good only at a very large time, which coincides with the classical limit.

One is probably curious what the exact solution of equation (5) is. Unfortunately, it
is impossible to solve it in general, but one can simplify considerably the mathematical
problem by neglecting the quantum entropic effect. Thus, performing the integration on β in
equation (5) at constant σ 4 leads to

∂tσ
2 = 2D

(
1 + λ2

T

/
σ 2

)
, (8)

where λT = h̄/2
√

mkBT is now proportional to the thermal de Broglie wave length. Note
that λT represents the position uncertainty calculated from the minimal Heisenberg principle
for the classical momentum dispersion. The solution of equation (8) reads

σ 2 = λ2
T

{−1 − W−1
[− exp

(−1 − 2Dt
/
λ2

T

)]}
, (9)

which is expressed via a Lambert W -function. In the case of large time equation (9)
tends asymptotically to the Einstein law, while at short time the purely quantum expression
σ 2 = h̄

√
t/mζ holds. Equation (9) can be well approximated by elementary mathematical

functions via the expression σ 2 = 2Dt + 2λ2
T ln(1 +

√
Dt/λT ), which reduces to equation (7)

in the semiclassical limit. This result differs substantially from the expression derived by Ford
and O’Connell [5], but the reason is obvious. The theory of Ford and O’Connell describes the
motion of a classical Brownian particle in a quantum environment. This is evident from the
fact that in the case of removal of the thermal bath, the remaining equation of motion of their
particle is the Newtonian one. The subject of equation (2) is just the opposite: a quantum
particle moving in a classical environment. Hence, without the thermal bath our particle is
described by the Schrödinger equation [3].

Finally, if the system is close to equilibrium one can replace the probability density
in the so-called quantum potential in equation (2) by the classical Boltzmann distribution
Pe ∝ exp(−βV ) to obtain the semiclassical description of the last stage of the probability
evolution. By doing so one can derive from equation (2) the following equation,

∂tP = ∂x[P∂xVeff/ζ + ∂x(DeffP)], (10)

where Veff = V + βh̄2∂2
xV

/
24m is an effective potential. This equation has already been

derived by Ankerhold et al [6] and Coffey et al [1] noted that it is not identical to
equation (1). The present analysis supports equation (10) as the correct semiclassical
Smoluchowski equation. The latter, however, neglects also the quantum relaxations, since
in the above derivation the equilibrium Boltzmann distribution was employed instead of the
non-equilibrium classical one.
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